Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Control Release ; 369: 687-695, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38575073

RESUMEN

Extracts of the Chilean soapbark tree, Quillaja Saponaria (QS) are the source of potent immune-stimulatory saponin compounds. This study compared the adjuvanticity and toxicity of QS-18 and QS-21, assessing the potential to substitute QS-18 in place of QS-21 for vaccine development. QS-18, the most abundant QS saponin fraction, has been largely overlooked due to safety concerns. We found that QS-18 spontaneously inserted into liposomes, thereby neutralizing hemolytic activity, and following administration did not induce local reactogenicity in a footpad swelling test in mice. With high-dose intramuscular administration, transient weight loss was minor, and QS-18 did not induce significantly more weight loss compared to a liposome vaccine adjuvant system lacking it. Two days after administration, no elevation of inflammatory cytokines was detected in murine serum. In a formulation including cobalt-porphyrin-phospholipid (CoPoP) for short peptide sequestration, QS-18 did not impact the formation of peptide nanoparticles. With immunization, QS-18 peptide particles induced higher levels of cancer neoepitope-specific and tumor-associated antigen-specific CD8+ T cells compared to QS-21 particles, without indication of greater toxicity based on mouse body weight. T cell receptor sequencing of antigen-specific CD8+ T cells showed that QS-18 induced significantly more T cell transcripts. In two murine cancer models, vaccination with QS-18 peptide particles induced a similar therapeutic effect as QS-21 particles, without indication of increased toxicity. Antigen-specific CD8+ T cells in the tumor microenvironment were found to express the exhaustion marker PD-1, pointing to the rationale for exploring combination therapy. Taken together, these data demonstrate that QS-18, when formulated in liposomes, can be a safe and effective adjuvant to induce tumor-inhibiting cellular responses in murine models with potential to facilitate or diminish costs of production for vaccine adjuvant systems. Further studies are warranted to assess liposomal QS-18 immunogic, reactogenic and toxicological profiles in mice and other animal species.

2.
Nat Commun ; 15(1): 3128, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605096

RESUMEN

One of the strategies towards an effective HIV-1 vaccine is to elicit broadly neutralizing antibody responses that target the high HIV-1 Env diversity. Here, we present an HIV-1 vaccine candidate that consists of cobalt porphyrin-phospholipid (CoPoP) liposomes decorated with repaired and stabilized clade C HIV-1 Env trimers in a prefusion conformation. These particles exhibit high HIV-1 Env trimer decoration, serum stability and bind broadly neutralizing antibodies. Three sequential immunizations of female rabbits with CoPoP liposomes displaying a different clade C HIV-1 gp140 trimer at each dosing generate high HIV-1 Env-specific antibody responses. Additionally, serum neutralization is detectable against 18 of 20 multiclade tier 2 HIV-1 strains. Furthermore, the peak antibody titers induced by CoPoP liposomes can be recalled by subsequent heterologous immunization with Ad26-encoded membrane-bound stabilized Env antigens. Hence, a CoPoP liposome-based HIV-1 vaccine that can generate cross-clade neutralizing antibody immunity could potentially be a component of an efficacious HIV-1 vaccine.


Asunto(s)
Vacunas contra el SIDA , Infecciones por VIH , VIH-1 , Vacunas , Animales , Conejos , Femenino , Liposomas , Anticuerpos Neutralizantes , Fosfolípidos , Anticuerpos Anti-VIH , Inmunización , Productos del Gen env del Virus de la Inmunodeficiencia Humana
3.
Cell Rep Med ; 5(3): 101433, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38401547

RESUMEN

Inclusion of defined quantities of the two major surface proteins of influenza virus, hemagglutinin (HA) and neuraminidase (NA), could benefit seasonal influenza vaccines. Recombinant HA and NA multimeric proteins derived from three influenza serotypes, H1N1, H3N2, and type B, are surface displayed on nanoliposomes co-loaded with immunostimulatory adjuvants, generating "hexaplex" particles that are used to immunize mice. Protective immune responses to hexaplex liposomes involve functional antibody elicitation against each included antigen, comparable to vaccination with monovalent antigen particles. When compared to contemporary recombinant or adjuvanted influenza virus vaccines, hexaplex liposomes perform favorably in many areas, including antibody production, T cell activation, protection from lethal virus challenge, and protection following passive sera transfer. Based on these results, hexaplex liposomes warrant further investigation as an adjuvanted recombinant influenza vaccine formulation.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Infecciones por Orthomyxoviridae , Ratones , Animales , Humanos , Hemaglutininas , Neuraminidasa/genética , Subtipo H3N2 del Virus de la Influenza A , Liposomas , Adyuvantes Inmunológicos , Vacunas Sintéticas
4.
Small ; 20(9): e2304534, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37849036

RESUMEN

The receptor binding domain (RBD) of the SARS-CoV-2 Spike (S) glycoprotein is an appealing immunogen, but associated vaccine approaches must overcome the hapten-like nature of the compact protein and adapt to emerging variants with evolving RBD sequences. Here, a vaccine manufacturing methodology is proposed comprising a sterile-filtered freeze-dried lipid cake formulation that can be reconstituted with liquid proteins to instantaneously form liposome-displayed protein nanoparticles. Mannitol is used as a bulking agent and a small amount of Tween-80 surfactant is required to achieve reconstituted submicron particles that do not precipitate prior to usage. The lipid particles include an E. coli-derived monophosphoryl lipid A (EcML) for immunogenicity, and cobalt porphyrin-phospholipid (CoPoP) for antigen display. Reconstitution of the lipid cake with aqueous protein results in rapid conversion of the RBD into intact liposome-bound format prior to injection. Protein particles can readily be formed with sequent-divergent RBD proteins derived from the ancestral or Omicron strains. Immunization of mice elicits antibodies that neutralize respective viral strains. When K18-hACE2 transgenic mice are immunized and challenged with ancestral SARS-CoV-2 or the Omicron BA.5 variant, both liquid liposomes displaying the RBD and rapid reconstituted particles protect mice from infection, as measured by the viral load in the lungs and nasal turbinates.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Animales , Ratones , SARS-CoV-2 , Escherichia coli , Liposomas , COVID-19/prevención & control , Lípidos
5.
Environ Sci Pollut Res Int ; 30(47): 103674-103689, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37688704

RESUMEN

Promoting green low-carbon development is an important task in the construction of ecological civilization of China. The leadership has proclaimed green low-carbon development as the top national priority for development. Green low-carbon economy has become the high point of global industrial competition. Green taxation, as a tool for environmental regulation, plays an important role in the construction of ecological civilization. Therefore, this paper investigates the impact of green taxation on green low-carbon development in the Yangtze River Delta (YRD) region of China, using data of 41 cities from 2011 to 2021 in the YRD region. We construct a green low-carbon development index with the combined weight CRITIC-entropy method, and employ a mediating effect model and a spatial Durbin model based on double fixed effects in this study, which intends to provide a theoretical basis for the establishment of a sound tax policy system that is conducive to the green low-carbon development. The results show that (1) there is an evident spatial dependence of green low-carbon development in the YRD region; (2) green taxation has a significant positive effect on green low-carbon development through rationalization of industrial structure and advance of industrial structure; and (3) the positive impact of green taxation on green low-carbon development in the region is characterized by spatial spillover and heterogeneity. Specifically, green taxation significantly promotes green low-carbon development in the core area, but such green taxation dividend has yet to be realized in the expansion area.


Asunto(s)
Carbono , Impuestos , China , Ciudades , Entropía , Desarrollo Económico
6.
Biomed J ; 46(6): 100588, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36925108

RESUMEN

BACKGROUND: Enterotoxigenic Escherichia coli (ETEC) strains cause infectious diarrhea and colonize host intestine epithelia via surface-expressed colonization factors. Colonization factor antigen I (CFA/I), a prevalent ETEC colonization factor, is a vaccine target since antibodies directed to this fimbria can block ETEC adherence and prevent diarrhea. METHODS: Two recombinant antigens derived from CFA/I were investigated with a vaccine adjuvant system that displays soluble antigens on the surface of immunogenic liposomes. The first antigen, CfaEB, is a chimeric fusion protein comprising the minor (CfaE) and major (CfaB) subunits of CFA/I. The second, CfaEad, is the adhesin domain of CfaE. RESULTS: Owing to their His-tag, recombinant CfaEB and CfaEad, spontaneously bound upon admixture with nanoliposomes containing cobalt-porphyrin phospholipid (CoPoP), as well as a synthetic monophosphoryl lipid A (PHAD) adjuvant. Intramuscular immunization of mice with sub-microgram doses CfaEB or CfaEad admixed with CoPoP/PHAD liposomes elicited serum IgG and intestinal IgA antibodies. The smaller CfaEad antigen benefitted more from liposome display. Serum and intestine antibodies from mice immunized with liposome-displayed CfaEB or CfaEad recognized native CFA/I fimbria as evidenced by immunofluorescence and hemagglutination inhibition assays using the CFA/I-expressing H10407 ETEC strain. CONCLUSION: These data show that colonization factor-derived recombinant ETEC antigens exhibit immunogenicity when delivered in immunogenic particle-based formulations.


Asunto(s)
Escherichia coli Enterotoxigénica , Infecciones por Escherichia coli , Animales , Ratones , Liposomas , Infecciones por Escherichia coli/prevención & control , Diarrea , Adhesinas Bacterianas , Antígenos Bacterianos
7.
J Mater Cycles Waste Manag ; 25(3): 1333-1343, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36785749

RESUMEN

Waste treatment is a problem faced by cities all over the world. In recent years, China, as a developing country, regards the municipal solid waste (MSW) classification as one of the important strategies to deal with the MSW problem. The previous MSW classification policies in China were all only advocacy in nature. It was not until January 2019 that the "Regulations on the Management of MSW in Shanghai" was officially promulgated as China's first compulsory MSW classification policy, marking the beginning of an era of compulsory MSW classification in China. How effective is the implementation of Shanghai's compulsory MSW classification policy 18 months after its implementation and can developing countries continuously and effectively implement compulsory MSW classification policies? These are important issues of concern to the government, academia, and the public. This paper establishes a three-stage DEA model to evaluate the implementation effect of the compulsory MSW classification policies in Shanghai during the period of February 2019 and July 2020. The study found that the average efficiency of the compulsory MSW classification policy in Shanghai reached 0.906 during the study period, indicating that the policy was executed reasonably well. However, there are only 5 months in 18 months that the policy was fully effective (reaching efficiency level 1), suggesting that there is still room for improvement. The main reason for not being able to achieve full effectiveness in some months is attributed to scale efficiency. At the same time, the general public budget revenue and expenditure of environmental variables have positive and negative impacts on the policy implementation effect in Shanghai. The research results can provide experience for China to comprehensively implement the compulsory MSW classification policy in the future and can also provide valuable case study information for cities in other developing countries to implement the compulsory MSW classification policy.

8.
BMC Med ; 20(1): 462, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36447243

RESUMEN

BACKGROUND: Numerous vaccine strategies are being advanced to control SARS-CoV-2, the cause of the COVID-19 pandemic. EuCorVac-19 (ECV19) is a recombinant protein nanoparticle vaccine that displays the SARS-CoV-2 receptor-binding domain (RBD) on immunogenic nanoliposomes. METHODS: Initial study of a phase 2 randomized, observer-blind, placebo-controlled trial to assess the immunogenicity, safety, and tolerance of ECV19 was carried out between July and October 2021. Two hundred twenty-nine participants were enrolled at 5 hospital sites in South Korea. Healthy adults aged 19-75 without prior known exposure to COVID-19 were vaccinated intramuscularly on day 0 and day 21. Of the participants who received two vaccine doses according to protocol, 100 received high-dose ECV19 (20 µg RBD), 96 received low-dose ECV19 (10 µg RBD), and 27 received placebo. Local and systemic adverse events were monitored. Serum was assessed on days 0, 21, and 42 for immunogenicity analysis by ELISA and neutralizing antibody response by focus reduction neutralization test (FRNT). RESULTS: Low-grade injection site tenderness and pain were observed in most participants. Solicited systemic adverse events were less frequent, and mostly involved low-grade fatigue/malaise, myalgia, and headache. No clinical laboratory abnormalities were observed. Adverse events did not increase with the second injection and no serious adverse events were solicited by ECV19. On day 42, Spike IgG geometric mean ELISA titers were 0.8, 211, and 590 Spike binding antibody units (BAU/mL) for placebo, low-dose and high-dose ECV19, respectively (p < 0.001 between groups). Neutralizing antibodies levels of the low-dose and high-dose ECV19 groups had FRNT50 geometric mean values of 129 and 316, respectively. Boosting responses and dose responses were observed. Antibodies against the RBD correlated with antibodies against the Spike and with virus neutralization. CONCLUSIONS: ECV19 was generally well-tolerated and induced antibodies in a dose-dependent manner that neutralized SARS-CoV-2. The unique liposome display approach of ECV19, which lacks any immunogenic protein components besides the antigen itself, coupled with the lack of increased adverse events during boosting suggest the vaccine platform may be amenable to multiple boosting regimes in the future. Taken together, these findings motivate further investigation of ECV19 in larger scale clinical testing that is underway. TRIAL REGISTRATION: The trial was registered at ClinicalTrials.gov as # NCT04783311.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Adulto , Humanos , Anticuerpos Neutralizantes , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Pandemias , Proteínas Recombinantes/genética , SARS-CoV-2 , Adulto Joven , Persona de Mediana Edad , Anciano
9.
Pathogens ; 11(9)2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36145467

RESUMEN

The global pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to efforts in developing effective vaccine approaches. Currently, approved coronavirus disease 2019 (COVID-19) vaccines are administered through an intramuscular (I.M.) route. Here, we show that the SARS-CoV-2 spike (S) glycoprotein receptor-binding domain (RBD), when displayed on immunogenic liposomes, can be intranasally (I.N.) administered, resulting in the production of antigen-specific IgA and antigen-specific cellular responses in the lungs. Following I.N. immunization, antigen-presenting cells of the lungs took up liposomes displaying the RBD. K18 human ACE2-transgenic mice that were immunized I.M or I.N with sub-microgram doses of RBD liposomes and that were then challenged with SARS-CoV-2 had a reduced viral load in the early course of infection, with I.M. achieving complete viral clearance. Nevertheless, both vaccine administration routes led to full protection against lethal viral infection, demonstrating the potential for the further exploration and optimization of I.N immunization with liposome-displayed antigen vaccines.

10.
J Virol ; 96(19): e0100622, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36106872

RESUMEN

Intranasal vaccination offers the potential advantage of needle-free prevention of respiratory pathogens such as influenza viruses with induction of mucosal immune responses. Optimal design of adjuvants and antigen delivery vehicles for intranasal delivery has not yet been well established. Here, we report that an adjuvant-containing nanoliposome antigen display system that converts soluble influenza hemagglutinin antigens into nanoparticles is effective for intranasal immunization. Intranasal delivery of nanoliposomes in mice delivers the particles to resident immune cells in the respiratory tract, inducing a mucosal response in the respiratory system as evidenced by nasal and lung localized IgA antibody production, while also producing systemic IgG antibodies. Intranasal vaccination with nanoliposome particles decorated with nanogram doses of hemagglutinin protected mice from homologous and heterologous H3N2 and H1N1 influenza virus challenge. IMPORTANCE A self-assembling influenza virus vaccine platform that seamlessly converts soluble antigens into nanoparticles is demonstrated with various H1N1 and H3N2 influenza antigens to protect mice against influenza virus challenge following intranasal vaccination. Mucosal immune responses following liposome delivery to lung antigen-presenting cells are demonstrated.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza , Inmunidad Mucosa , Vacunas contra la Influenza , Infecciones por Orthomyxoviridae , Adyuvantes Inmunológicos , Administración Intranasal , Animales , Anticuerpos Antivirales/inmunología , Células Presentadoras de Antígenos/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/administración & dosificación , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Inmunoglobulina A/inmunología , Inmunoglobulina G/inmunología , Subtipo H1N1 del Virus de la Influenza A , Subtipo H3N2 del Virus de la Influenza A , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/inmunología , Liposomas , Ratones , Nanopartículas , Infecciones por Orthomyxoviridae/prevención & control , Vacunación
11.
APL Bioeng ; 6(3): 036105, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36164594

RESUMEN

Pancreatic cancer (PaCa) suffers from poor treatment options for locally advanced cases. Chemophototherapy (CPT) is an emerging anti-tumor modality, and porphyrin-phospholipid liposomes have been shown to be versatile drug carriers for CPT in preclinical rodent models. Here we show that in the syngeneic subcutaneous KPC PaCa tumor model, exhausted CD8+ T cells are localized in the tumor, and that CPT is enhanced in combination with immune checkpoint blockade (ICB). Addition of ICB using anti-programmed cell death 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) antibodies resulted in ablation of medium-sized, established KPC tumors (∼200 mm3) without recurrence for over 100 days. Mice rejected subsequent tumor re-challenge. Flow cytometry and tumor slice analysis following injection of a fluorescently labeled anti-PD-1 antibody showed that CPT improved antibody delivery to the tumor microenvironment. Treatment of large established tumors (∼400 mm3) using with CPT and ICB induced appreciable tumor regression and delay in regrowth. Taken together, these data demonstrate the utility of combining CPT with immunotherapies.

12.
Immunity ; 55(9): 1680-1692.e8, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-35977542

RESUMEN

Malaria transmission-blocking vaccines (TBVs) aim to elicit human antibodies that inhibit sporogonic development of Plasmodium falciparum in mosquitoes, thereby preventing onward transmission. Pfs48/45 is a leading clinical TBV candidate antigen and is recognized by the most potent transmission-blocking monoclonal antibody (mAb) yet described; still, clinical development of Pfs48/45 antigens has been hindered, largely by its poor biochemical characteristics. Here, we used structure-based computational approaches to design Pfs48/45 antigens stabilized in the conformation recognized by the most potently inhibitory mAb, achieving >25°C higher thermostability compared with the wild-type protein. Antibodies elicited in mice immunized with these engineered antigens displayed on liposome-based or protein nanoparticle-based vaccine platforms exhibited 1-2 orders of magnitude superior transmission-reducing activity, compared with immunogens bearing the wild-type antigen, driven by improved antibody quality. Our data provide the founding principles for using molecular stabilization solely from antibody structure-function information to drive improved immune responses against a parasitic vaccine target.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Animales , Anticuerpos Bloqueadores , Anticuerpos Monoclonales , Anticuerpos Antiprotozoarios , Formación de Anticuerpos , Antígenos de Protozoos , Humanos , Malaria Falciparum/prevención & control , Glicoproteínas de Membrana , Ratones , Plasmodium falciparum , Proteínas Protozoarias , Vacunación
13.
Commun Biol ; 5(1): 773, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35915227

RESUMEN

A vaccine targeting multiple stages of the Plasmodium falciparum parasite life cycle is desirable. The sporozoite surface Circumsporozoite Protein (CSP) is the target of leading anti-infective P. falciparum pre-erythrocytic vaccines. Pfs230, a sexual-stage P. falciparum surface protein, is currently in trials as the basis for a transmission-blocking vaccine, which inhibits parasite development in the mosquito vector. Here, recombinant full-length CSP and a Pfs230 fragment (Pfs230D1+) are co-displayed on immunogenic liposomes to induce immunity against both infection and transmission. Liposomes contain cobalt-porphyrin phospholipid (CoPoP), monophosphoryl lipid A and QS-21, and rapidly bind His-tagged CSP and Pfs230D1+ upon admixture to form bivalent particles that maintain reactivity with conformational monoclonal antibodies. Use of multicolor fluorophore-labeled antigens reveals liposome binding upon admixture, stability in serum and enhanced uptake in murine macrophages in vitro. Bivalent liposomes induce humoral and cellular responses against both CSP and Pfs230D1+. Vaccine-induced antibodies reduce parasite numbers in mosquito midguts in a standard membrane feeding assay. Mice immunized with liposome-displayed antigens or that passively receive antibodies from immunized rabbits have reduced parasite liver burden following challenge with transgenic sporozoites expressing P. falciparum CSP.


Asunto(s)
Vacunas contra la Malaria , Plasmodium falciparum , Animales , Anticuerpos Antiprotozoarios , Antígenos , Liposomas , Ratones , Proteínas Protozoarias/genética , Conejos , Esporozoítos
14.
NPJ Vaccines ; 7(1): 4, 2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-35027567

RESUMEN

Pfs230 is a leading malaria transmission blocking vaccine (TBV) candidate. Comprising 3135 amino acids (aa), the large size of Pfs230 necessitates the use of sub-fragments as vaccine immunogens. Therefore, determination of which regions induce functional antibody responses is essential. We previously reported that of 27 sub-fragments spanning the entire molecule, only five induced functional antibodies. A "functional" antibody is defined herein as one that inhibits Plasmodium falciparum parasite development in mosquitoes in a standard membrane-feeding assay (SMFA). These five sub-fragments were found within the aa 443-1274 range, and all contained aa 543-730. Here, we further pinpoint the location of epitopes within Pfs230 that are recognized by functional antibodies using antibody depletion and enrichment techniques. Functional epitopes were not found within the aa 918-1274 region. Within aa 443-917, further analysis showed the existence of functional epitopes not only within the aa 543-730 region but also outside of it. Affinity-purified antibodies using a synthetic peptide matching aa 543-588 showed activity in the SMFA. Immunization with a synthetic peptide comprising this segment, formulated either as a carrier-protein conjugate vaccine or with a liposomal vaccine adjuvant system, induced antibodies in mice that were functional in the SMFA. These findings provide key insights for Pfs230-based vaccine design and establish the feasibility for the use of synthetic peptide antigens for a malaria TBV.

15.
Adv Mater ; 34(12): e2107781, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34894000

RESUMEN

The ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory coronavirus 2 (SARS-CoV-2), has killed untold millions worldwide and has hurtled vaccines into the spotlight as a go-to approach to mitigate it. Advances in virology, genomics, structural biology, and vaccine technologies have enabled a rapid and unprecedented rollout of COVID-19 vaccines, although much of the developing world remains unvaccinated. Several new vaccine platforms have been developed or deployed against SARS-CoV-2, with most targeting the large viral Spike immunogen. Those that safely induce strong and durable antibody responses at low dosages are advantageous, as well are those that can be rapidly produced at a large scale. Virtually all COVID-19 vaccines and adjuvants possess nanoscale or microscale dimensions and represent diverse and unique biomaterials. Viral vector vaccine platforms, lipid nanoparticle mRNA vaccines and multimeric display technologies for subunit vaccines have received much attention. Nanoscale vaccine adjuvants have also been used in combination with other vaccines. To deal with the ongoing pandemic, and to be ready for potential future ones, advanced vaccine technologies will continue to be developed in the near future. Herein, the recent use of advanced materials used for developing COVID-19 vaccines is summarized.


Asunto(s)
COVID-19 , Vacunas Virales , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Liposomas , Nanopartículas , SARS-CoV-2
16.
Sci Adv ; 7(49): eabj1476, 2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34851667

RESUMEN

The COVID-19 pandemic has spurred interest in potent and thermostable SARS-CoV-2 vaccines. Here, we assess low-dose immunization with lyophilized nanoparticles decorated with recombinant SARS-CoV-2 antigens. The SARS-CoV-2 Spike glycoprotein or its receptor-binding domain (RBD; mouse vaccine dose, 0.1 µg) was displayed on liposomes incorporating a particle-inducing lipid, cobalt porphyrin-phospholipid (dose, 0.4 µg), along with monophosphoryl lipid A (dose, 0.16 µg) and QS-21 (dose, 0.16 µg). Following optimization of lyophilization conditions, Spike or RBD-decorated liposomes were effectively reconstituted and maintained conformational capacity for binding human angiotensin-converting enzyme 2 (hACE2) for at least a week when stored at 60°C in lyophilized but not liquid format. Prime-boost intramuscular vaccination of hACE2-transgenic mice with the reconstituted vaccine formulations induced effective antibody responses that inhibited RBD binding to hACE2 and neutralized pseudotyped and live SARS-CoV-2. Two days following viral challenge, immunized transgenic mice cleared the virus and were fully protected from lethal disease.

17.
J Immunother Cancer ; 9(12)2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34862254

RESUMEN

BACKGROUND: Induction of CD8+ T cells that recognize immunogenic, mutated protein fragments in the context of major histocompatibility class I (MHC-I) is a pressing challenge for cancer vaccine development. METHODS: Using the commonly used murine renal adenocarcinoma RENCA cancer model, MHC-I restricted neoepitopes are predicted following next-generation sequencing. Candidate neoepitopes are screened in mice using a potent cancer vaccine adjuvant system that converts short peptides into immunogenic nanoparticles. An identified functional neoepitope vaccine is then tested in various therapeutic experimental tumor settings. RESULTS: Conversion of 20 short MHC-I restricted neoepitope candidates into immunogenic nanoparticles results in antitumor responses with multivalent vaccination. Only a single neoepitope candidate, Nesprin-2 L4492R (Nes2LR), induced functional responses but still did so when included within 20-plex or 60-plex particles. Immunization with the short Nes2LR neoepitope with the immunogenic particle-inducing vaccine adjuvant prevented tumor growth at doses multiple orders of magnitude less than with other vaccine adjuvants, which were ineffective. Nes2LR vaccination inhibited or eradicated disease in subcutaneous, experimental lung metastasis and orthotopic tumor models, synergizing with immune checkpoint blockade. CONCLUSION: These findings establish the feasibility of using short, MHC-I-restricted neoepitopes for straightforward immunization with multivalent or validated neoepitopes to induce cytotoxic CD8+ T cells. Furthermore, the Nes2LR neoepitope could be useful for preclinical studies involving renal cell carcinoma immunotherapy.


Asunto(s)
Antígenos de Neoplasias/inmunología , Linfocitos T CD8-positivos/inmunología , Vacunas contra el Cáncer/administración & dosificación , Carcinoma de Células Renales/prevención & control , Epítopos/inmunología , Proteínas del Tejido Nervioso/inmunología , Proteínas Nucleares/inmunología , Fragmentos de Péptidos/farmacología , Animales , Carcinoma de Células Renales/inmunología , Carcinoma de Células Renales/patología , Femenino , Antígenos de Histocompatibilidad Clase I/inmunología , Neoplasias Renales/inmunología , Neoplasias Renales/patología , Neoplasias Renales/prevención & control , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/prevención & control , Neoplasias Pulmonares/secundario , Ratones , Ratones Endogámicos BALB C , Nanopartículas/administración & dosificación , Nanopartículas/química , Fragmentos de Péptidos/inmunología , Linfocitos T Citotóxicos/inmunología
18.
Adv Sci (Weinh) ; 8(24): e2103023, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34716694

RESUMEN

Short peptides reflecting major histocompatibility complex (MHC) class I (MHC-I) epitopes frequently lack sufficient immunogenicity to induce robust antigen (Ag)-specific CD8+ T cell responses. In the current work, it is demonstrated that position-scanning peptide libraries themselves can serve as improved immunogens, inducing Ag-specific CD8+ T cells with greater frequency and function than the wild-type epitope. The approach involves displaying the entire position-scanning library onto immunogenic nanoliposomes. Each library contains the MHC-I epitope with a single randomized position. When a recently identified MHC-I epitope in the glycoprotein gp70 envelope protein of murine leukemia virus (MuLV) is assessed, only one of the eight positional libraries tested, randomized at amino acid position 5 (Pos5), shows enhanced induction of Ag-specific CD8+ T cells. A second MHC-I epitope from gp70 is assessed in the same manner and shows, in contrast, multiple positional libraries (Pos1, Pos3, Pos5, and Pos8) as well as the library mixture give rise to enhanced CD8+ T cell responses. The library mixture Pos1-3-5-8 induces a more diverse epitope-specific T-cell repertoire with superior antitumor efficacy compared to an established single mutation mimotope (AH1-A5). These data show that positional peptide libraries can serve as immunogens for improving CD8+ T-cell responses against endogenously expressed MHC-I epitopes.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Leucemia/inmunología , Activación de Linfocitos/inmunología , Biblioteca de Péptidos , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos BALB C
19.
ACS Appl Mater Interfaces ; 13(23): 26712-26720, 2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34082523

RESUMEN

Delivering hydrophobic molecules through the intestine can be challenging due to limited cargo solubility and the harsh biochemical environment of the stomach. Here, we show that a protein-based nanocarrier system based on the abundant protein histone and the natural cross-linker genipin can deliver hydrophobic cargos, such as dyes and therapeutic molecules, through the gastrointestinal tract. Using hydrophobic near-infrared dyes as model cargos, a panel of potential protein carriers was screened, and histone was identified as the one with the best loading capability. The resulting nanoparticles had a positive ζ potential and were mucoadhesive. Cross-linking of the amine-rich nanocarrier with genipin was particularly effective relative to other proteins and increased the stability of the system during incubation with pepsin. Cross-linking was required for successful delivery of a hydrophobic dye to the colon of mice after oral gavage. To assess the platform for therapeutic delivery, another hydrophobic model compound, curcumin, was delivered using cross-linked histone nanoparticles in a murine colitis model and significantly alleviated the disease. Taken together, these results demonstrate that histone is a cationic, mucoadhesive, and cross-linkable protein nanocarrier that can be considered for oral delivery.


Asunto(s)
Colitis/tratamiento farmacológico , Curcumina/farmacología , Portadores de Fármacos/química , Histonas/química , Iridoides/química , Nanopartículas/administración & dosificación , Animales , Antiinflamatorios no Esteroideos/farmacología , Colitis/patología , Reactivos de Enlaces Cruzados/química , Femenino , Tracto Gastrointestinal/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Ratones Endogámicos ICR , Nanopartículas/química
20.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34050027

RESUMEN

Recombinant influenza virus vaccines based on hemagglutinin (HA) hold the potential to accelerate production timelines and improve efficacy relative to traditional egg-based platforms. Here, we assess a vaccine adjuvant system comprised of immunogenic liposomes that spontaneously convert soluble antigens into a particle format, displayed on the bilayer surface. When trimeric H3 HA was presented on liposomes, antigen delivery to macrophages was improved in vitro, and strong functional antibody responses were induced following intramuscular immunization of mice. Protection was conferred against challenge with a heterologous strain of H3N2 virus, and naive mice were also protected following passive serum transfer. When admixed with the particle-forming liposomes, immunization reduced viral infection severity at vaccine doses as low as 2 ng HA, highlighting dose-sparing potential. In ferrets, immunization induced neutralizing antibodies that reduced the upper respiratory viral load upon challenge with a more modern, heterologous H3N2 viral strain. To demonstrate the flexibility and modular nature of the liposome system, 10 recombinant surface antigens representing distinct influenza virus strains were bound simultaneously to generate a highly multivalent protein particle that with 5 ng individual antigen dosing induced antibodies in mice that specifically recognized the constituent immunogens and conferred protection against heterologous H5N1 influenza virus challenge. Taken together, these results show that stable presentation of recombinant HA on immunogenic liposome surfaces in an arrayed fashion enhances functional immune responses and warrants further attention for the development of broadly protective influenza virus vaccines.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Subtipo H5N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Liposomas , Adyuvantes Inmunológicos/administración & dosificación , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Antígenos Virales/inmunología , Relación Dosis-Respuesta Inmunológica , Hurones , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...